Stress relaxation in carbon nanotube-based fibers for load-bearing applications

نویسندگان

  • Mei Zu
  • Qingwen Li
  • Yuntian Zhu
  • Yong Zhu
  • Guojian Wang
  • Joon-Hyung Byun
  • Tsu-Wei Chou
چکیده

Carbon nanotube (CNT) based continuous fiber, a CNT assembly that could retain the superb properties of individual CNTs on a macroscopic scale, has emerged as a promising candidate for reinforcement in multifunctional composites. While existing research has extensively examined their short-term mechanical properties based upon quasi-static measurements, the long-term durability of CNT fibers has been largely neglected. Here we report time-dependent behavior of CNT fibers, with a particular focus on tensile stress relaxation. Both the pure CNT fiber and the CNT/epoxy composite fiber exhibited significant stress decay during the relaxation process, and this time-dependent behavior became more significant at a higher initial strain level, a lower strain rate and a greater gauge length. The present approach signifies a fundamental difference in the load-bearing characteristics between CNT fibers and traditional advanced fibers, which has major implications for the long-term durability of CNT fibers in load-bearing multifunctional

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Crack Resistance in Single Walled Carbon Nanotube Reinforced Polymer Composites Based on FEM

Carbon nanotube (CNT) is considered as a new generation of material possessing superior mechanical, thermal and electrical properties. The applications of CNT, especially in composite materials, i.e. carbon nanotube reinforced polymer have received great attention and interest in recent years. To characterize the influence of CNT on the stress intensity factor of nanocomposites, three fracture ...

متن کامل

Distribution of Residual Stresses in Polymer Reinforced Carbon Nanotubes and Laminated Carbon Fibers

In this study, the distribution of residual stress in fiber-reinforced nanocomposites is investigated. Fiber-reinforced nanocomposite is composed of three substances: carbon fiber, carbon nanotube (CNT), and polymer matrix. Unit cells in hexagonal packing array with different arrays as unit cell, 3*3 and 5*5 arrays have been selected as suitable for finite element analysis of residual stresses....

متن کامل

Molecular Dynamics Simulations of Strained and Defective Carbon Nanotubes

Carbon nanotubes are tubular molecules of pure carbon with typical diameters of 1 nm – 100 nm and lengths from 100 nm up to several cm. The nanotubes have outstanding electronical and mechanical properties which has resulted in remarkable scientific interest and in proporsals of various applications. For example, their ability to be either metals or semiconductors enables the usage of nanotubes...

متن کامل

Elasticity Solution of Functionally Graded Carbon Nanotube Reinforced Composite Cylindrical Panel

Based on three-dimensional theory of elasticity, static analysis of functionally graded carbon nanotube reinforced composite (FG-CNTRC) cylindrical panel subjected to mechanical uniformed load with simply supported boundary conditions is carried out. In the process, stress and displacement fields are expanded according to the Fourier series along the axial and circumferential coordinates. From ...

متن کامل

Thermal Effect on the Torsional Buckling of Double Walled Carbon Nanotube Embedded in Pasternak Foundation

In this study the effect of thermal stress on the torsional buckling of double walled carbon nanotubes is investigated. Moreover based on nonlocal continuum mechanic the buckling governing equations are obtained and equilibrium of Equations is generalized to double wall nanotubes. Also in this study the elastic medium, small scale effect and van der Walls force are considered. Also for simulati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012